COVID-19: current status and lessons for the future May 17, 2021

Martin J. Cannon, Ph.D.

Department of Microbiology and Immunology, UAMS

What happens if/when we ease off restrictions on socialization?

- There has been increasing social and economic pressure to relax containment policies
- This may seem like a bad idea from a public health perspective, but the socioeconomic impact of extended containment of transmission can also be devastating
- Consequences will be mitigated by extensive uptake of vaccination
- Prediction from April 2020: Restrictions will be eased at some point (my best guess would be June), and we will probably see a rebound in cases, and putting us back on the ascending part of the curve
- What happened? Pretty much as predicted a big increase in cases in the fall/winter of 2020
- COVID-19 infection has followed the classic course of a pandemic, progressing through several cycles over an extended period
- Rate of infection declined rapidly in the spring of 2021, as the vaccination program advanced

COVID-19 transmission models

- Baseline simulation with case isolation only (red)
- Flattening the curve through social distancing (green)
- More aggressive social restrictions (blue), followed by risk of rebound when restrictions are eased
- https://doi.org/10.1016/S0140-6736(20)30567-5
- Always a risk of resurgence when containment measures are eased under any of these models, so red and green curves may be misleading....COVID-19 won't just go away

What is the frequency of mild or asymptomatic cases?

- This is largely unknown, but it matters because it has a considerable epidemiologic impact
- Study from Iceland, which tests very extensively, indicated that 50% of positive tests for COVID-19 were from individuals who had no symptoms
- Limited study in China found that 130 (78%) of 166 new infections identified over 24 hours (April 1) were asymptomatic https://doi.org/10.1136/bmj.m1375
- Chinese study is difficult to interpret, since this takes a snapshot, and asymptomatic cases may yet develop symptoms
- Suggests that true frequency of COVID-19 infection may be far higher than numbers based only on testing symptomatic individuals

What is the impact of a high frequency of asymptomatic/mild COVID-19 cases?

- \bullet This would likely raise the estimated R₀ value and secondary attack rates, and also raise the threshold for herd immunity
- On the plus side, a much higher frequency of infection would suggest that populations can reach a threshold for herd immunity earlier than thought
- The downside is that asymptomatic COVID-19⁺ individuals may still transmit infection to others
- A high frequency of asymptomatic cases would raise an argument that lockdown policies are ineffective, while also causing an economic meltdown
- Antibody testing will provide more reliable data, and will aid in decisions on when to relieve stay-at-home orders and ease restrictions on social distancing

Racial disparities

- Limited data, since most states don't take race into account when reporting COVID-19 incidence
- However, a number of jurisdictions have reported disproportionately high COVID-19 incidence relative to population of blacks (e.g., Illinois, Michigan, Louisiana)
- President Trump was baffled...."Why is it that the African-American community is so much, numerous times more than everybody else?"
- Longstanding inequalities mean African-Americans are less likely to be insured and more likely to have existing health conditions
- African Americans are also more likely to work in jobs that involve close contact: they do not have the luxury of working from home
- Disparities in testing can lead to worse outcomes

Are there effective drugs for treatment of COVID-19?

The big news for 2021 has been the widespread introduction of SARS-COV-2 vaccines

- Some countries have done better than others....the UK, US and Israel have been notably successful
- Widespread evidence of inequities in global vaccine distribution

SARS-CoV-2 vaccine types

RNA vaccines

Pfizer-BioNTech: modified mRNA encoding SARS-CoV-2 spike protein encapsulated in lipid nanoparticles

Moderna: essentially the same as above

Adenovirus vector vaccines

Oxford-AstraZeneca: modified chimpanzee adenovirus ChAdOx1 encoding SARS-CoV-2 spike protein

Johnson and Johnson: Ad26 encoding SARS-CoV-2 spike protein

Sputnik V (Russia): two vector vaccine, Ad5 and Ad26, encoding SARS-CoV-2 spike protein. First dose is Ad26, second dose is Ad5

Convidecia (China): (Ad5-nCOV) encoding SARS-CoV-2 spike protein

SARS-CoV-2 vaccine types

Inactivated virus vaccines

Coronavac (Sinovac, China): Phase III trial in Brazil showed 50% efficacy at preventing symptomatic infection, 83% effective in preventing mild cases from needing treatment. Phase III trial in Turkey showed 83% efficacy (March 2021)

Covaxin (India): efficacy reportedly 81% (April 2021)

Covivac (Russia): no efficacy data

Subunit vaccines:

EpiVacCorona (Russia): three peptide fragments of SARS-CoV-2 spike protein conjugated to a carrier protein (itself a fusion of a viral nucleocapsid protein and a bacterial maltose-binding protein)

RBD-Dimer (China): dimeric form of SARS-CoV-2 spike receptor-binding domain

How some of the Covid-19 vaccines compare

Company	Doses		Storage	
RNA				
Pfizer (BioNTech)	FF		-80 to -60°C (6 months) and 2 to 8°C (for up to 5 days)	
Moderna	J J		-25 to -15°C (6 months) and 2 to 8°C (for 30 days)	
Viral vector				
Oxford-AstraZeneca	77		2 to 8°C (6 months)	
Sputnik V (Gamaleya)	FF		-18.5°C (liquid form) 2 to 8°C (dry form)	
Johnson & Johnson (Janssen)	F		2 to 8°C (3 months)	
Inactivated virus				
CoronaVac (Sinovac)	77		2 to 8°C	
Sinopharm	J J		2 to 8°C	
Covaxin (Bharat Biotech)	J J		2 to 8°C	
Protein-based				
Novavax	J J		2 to 8°C	
Source: Wellcome Trust, BBC research				

How some of the Covid-19 vaccines compare

Company	Type	Doses	How effective*	Storage	Cost per dose
Oxford Uni- AstraZeneca	Viral vector (genetically modified virus)	×2 /	62-90%	Regular fridge temperature	£3 (\$4)
Moderna	RNA (part of virus genetic code)	x2 /	95%	-20C up to 6 months	£25 (\$33)
Pfizer- BioNTech	RNA	×2 /	95%	-70C	£15 (\$20)
Gamaleya (Sputnik V)	Viral vector	×2 /	92%	Regular fridge temperature (in dry form)	£7.50 (\$10)

*preliminary phase three results, not yet peer-reviewed

Source: Respective companies, WHO

COVID-19 vaccinations in the US, as of May 9, 2021

Total	Vaccine	Doses	

Delivered 329,843,825

Administered 259,716,989

Learn more about the distribution of vaccines.

People Vaccinated	At Least One Dose	Fully Vaccinated
Total	152,116,936	114,258,244
% of Total Population	45.8%	34.4%
Population ≥ 18 Years of Age	149,694,264	113,173,661
% of Population ≥ 18 Years of Age	58%	43.8%
Population ≥ 65 Years of Age	45,733,728	38,989,383
% of Population ≥ 65 Years of Age	83.6%	71.3%

CDC | Data as of: May 9, 2021 6:00am ET. Posted: Sunday, May 9, 2021 1:35 PM ET

- Arkansas has administered 1.9 million doses, at 62,960 per 100K of population (currently ranked 48th of 50 states)
- 36.5% have received at least one dose, and 27.5% are fully vaccinated (VT, MA lead with 59% receiving at least one dose)
- 69.97% of distributed vaccines in Arkansas have been administered (ranked 47th NM leads at 89.41%)

Pfizer vaccine-elicited neutralization against new SARS-CoV-2 variants

Several recent SARS-CoV-2 variants are cause for concern in the US, including California B.1.429, New York B.1.526 and the UK B.1.1.7 lineage with a new E484K substitution in the Spike protein

Tested serum neutralization of SARS-CoV-2 USA-WA1/2020 isolated in January 2020 and recent variants after administration of two doses of the Pfizer vaccine (BNT162b2)

50% plaque reduction neutralization testing (PRNT) showed that variants remain susceptible to neutralization, i.e., vaccination remains effective

Y Liu et al, NEJM May 12, 2021

Watch this space: serum from Pfizer vaccinees about 67% less potent against B.1.617 variant, which is predominant in India, and has been detected in the US M Hoffmann et al, bioRxiv, May 5, 2021

SARS-CoV-2 vaccine side effects

- Injection site: pain redness. Swelling
- Systemic: tiredness, headache, muscle pain, chills, fever, nausea
- Very rare association of blood clots with AstraZeneca, J & J vaccines, possibly related to use of adenovirus vector
- Thrombosis-thrombocytopenia syndrome, associated with antibody response to platelet factor 4 (PF4)
 https://www.nejm.org/doi/full/10.1056/NEJMe2106315?query=TOC
- J & J vaccine briefly paused after reports of six cases
- Total of 209 cases following AstraZeneca vaccine

Impact of SARS-CoV-2 variants on vaccine efficacy

- The B.1.117 (UK) variant is currently the most prevalent in the US available COVID-19 vaccines afford solid protection
- The B.1.167 variant is predominant in India, and has been picked up in 1-3% of COVID-19 infections in the US – this variant appears to be more transmissible, and prevalence is likely to increase
- The B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.427 (Epsilon), B.1.429 (Epsilon), and B.1.617.2 (Delta) variants circulating in the United States are classified as variants of concern
- Current evidence suggests that vaccination affords protection against B.1.167 (Alpha) and other variants
- Viruses change constantly vaccine formulations may need to be adjusted in response to viral evolution

The vaccine class gap

Vaccine Attitudes

People chose one of five categories: vaccinated; want to be A.S.A.P; wait and see; only if required; definitely not.

- Two distinct demographic groups show greater vaccine hesitancy – Republicans and racial minorities
- Also a huge class gap according to education level,
 i.e., working class versus professional
- Different racial groups of similar education levels can look remarkably similar
- Vaccine access may also contribute to class gap, notably for working class minorities

Vaccine Attitudes by Class

NON-GRADUATES

Random survey of 2,097 adults conducted from April 15 to April 29, 2021. Not all figures total to 100 percent; some people did not give an answer.

New York Times/Kaiser Family Foundation, 5/24/2021

Vaccine hesitancy and the anti-vaxxers

- Lack of vaccine acceptance will ultimately be the biggest barrier to containment of COVID-19 infection
- Reasons are highly complex, usually based on misinformation
- Miami school bans vaccinated teachers!
 https://www.nytimes.com/2021/04/26/us/florida-centner-academy-vaccine.html

Some creative incentives for vaccination

https://www.theguardian.com/usnews/2021/may/12/ohio-coronavirus-vaccinelottery-1-million

Incentives for vaccination

- https://www.nejm.org/doi/full/10.1056/NEJ Mp2107719?query=TOC
- Vax-a-Million, \$1 million prizes in Ohio, full scholarships for college
- Ohio's vaccination rates double after state vaccine lottery
- CVS offers a series of prizes, including a cruise, tickets to the Super Bowl, \$5,000 cash
- Many companies offer gift cards or paid time off for employees who get vaccinated
- Lots of creative ideas....
- https://www.aarp.org/health/conditions-treatments/info-2021/vaccine-incentives.html

Questions?

mjcannon@uams.edu